UNIT - 11
THREE PHASE BALANCED AND UNBALANCED CIRCUITS

Topics: Three phase circuits: Phase sequence (A-B-C & A-C-B) of source and load- Star and delta
connections-Relation between line and phase voltages and currents in balanced three phase
source phasor diagrams-Analysis of three phase balanced load circuits- Calculation of Active,
Reactive power, apparent power in balanced three phase systems.

Analysis of three phase unbalanced load circuits-Loop Method- Millman’s Theorem method-
Star Delta Transformation methods, phasor diagrams.

INTRODUCTION:

A system which utilizes only one winding and generates single alternating voltage and
current is known as a single-phase system.

A system which utilizes more than one winding is called a poly-phase system. It
produces as many induced voltages as the number of windings. The generation of electric
power is, however, three-phase in practice because, even though it is possible to have any
number of sources in a poly-phase system, the increase in the available power is not significant
beyond the three-phase system.

ADVANTAGES OF THREE-PHASE SYSTEMS:

A three-phase system has a number of advantages over a single-phase system.

i) The output of a three-phase machine generating electricity is more than the output of a
single-phase machine of the same size.

ii) The most commonly used three-phase induction motors are self starting. For single-phase
motors, a separate starting winding is required.

iii) Electrical power transmission from the generating station to the places of use is done by
transmission lines. It has been seen that three-phase power transmission is more economical
than single-phase power transmission.

iv) The power factor of three-phase systems is better than that of the single-phase systems.

v) Single-phase supply can also be obtained from a three-phase supply.

vi) The instantaneous power in a single-phase system is fluctuating with time giving rise to
noisy performance of single-phase motors. The power output of a symmetrical three-phase
system is steady.

vii) For rectification of AC into DC, the DC output voltage becomes less fluctuating if the number
of phases is increased.

GENERATION OF THREE PHASE VOLTAGES
The Three-phase voltages can be generated in a stationary armature with a rotating field
structure, or In a rotating armature with a stationary field as shown in Fig. (a) and (b).
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(a) Stationary Armature {b) Stationary Field

The Single-phase voltages and currents are generated by single-phase generators as
shown in Fig.(c). The armature (here a stationary armature) of such a generator has only one
winding, or one set of coils. In a two-phase generator, the armature has two distinct windings,
or two sets of coils that are displaced 90° (electrical degrees) apart, so that the generated
voltages in the two phases have 90° phase displacement as shown in Fig.(d). Similarly, three-
phase voltages are generated in three separate but identical sets of windings or coils that are
displaced by 1200 electrical degrees in the armature, so that the voltages generated in them are

1200 apart in time phase, This arrangement is shown in Fig.(e). Here RR' constitutes one coil
(R-phase): YY’ another coil (Y-phase), and BB' constitutes the third phase (B-phase). The field
magnets are assumed in clockwise rotation.

R

O

Vgr' = Vp, sin ot

R’ ©

Ver? =V, sinwt

V_ sin (wt—90%)

VYY/: m

(d)
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The voltages generated by a three-phase alternator is shown in Fig.(e). The three
voltages are of the same magnitude and frequency, but are displaced from one another by 120°.
Assuming the voltages to be sinusoidal, we can write the equations for the instantaneous values
of the voltages of the three phases. Counting the time from the instant when the voltage in
phase R is zero.

The equations are

vpr = Vi, sin Wt
vyy ' =V, sin (Wt — 120°)
ver ' = Vp, sin (Wt — 240°)

PHASOR DIAGRAM
At any given instant, the algebraic sum of the three voltages must be zero..

NOTE: THREE PHASE VOLTAGE WAVEFORM
[A g
(or)
Ry 'R Y
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BASIC DEFINITIONS:

1. Phase Sequence: The sequence in which the voltages in the three phases reach the
maximum positive value is called the phase sequence or phase order. From the phasor diagram
of a three-phase system, it is clear that the voltage in the coil R attains maximum positive value
first, next in the coil Y and then in the coil B. Hence, the phase sequence is R-Y-B.

1E't'irEEn VYn

(@) RYB or positive sequence RBY or negative sequence
"IHRI = Vi sin Wt 1’;”.3' =V, sin Wt

vyy = Vy, sin (Wt - 120°) Ve =V, sin (Wt - 120°)
vpp ' =V, sin (Wt - 240°) vyy ' =V, sin (Wt — 240°)

Example: Determine the phase sequence of the set of voltages

V,, =200cos(at+10°) ¥, =200cos(@r~230") ¥, =200cos(wr~110°)

i = b
Solution:
The voltages can be expressed in phasor form as

V. =200£10" ¥, =200£-230" ¥V, =200£-110"

i b =
We notice that V, leads V_, by 120° and V, in turn leads V,,, by 120°,

Hence, we have an ach (negative) sequence.

bn

2. Phase Voltage: The voltage induced in each winding is called the phase voltage.

3. Phase Current: The current flowing through each winding is called the phase current.

4. Line Voltage: The voltage available between any pair of terminals or lines is called the line
voltage.

5. Line Current: The current flowing through each line is called the line current.

6. Symmetrical or Balanced System: A three-phase system is said to be balanced if the

(a) voltages in the three phases are equal in magnitude and differ in phase from one another by
120°, and

(b) currents in the three phases are equal in magnitude and differ in phase from one another by
120°.
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7. Balanced Load: The load is said to be balanced if loads connected across the three phases
are identical, i.e., all the loads have the same magnitude and power factor.

8. Balanced supply: A set of three sinusoidal voltages (or currents) that are equal in
magnitude but has a phase difference of 120° constitute a balanced three-phase voltage (or
current) system.

9. Unbalanced supply: A three-phase system is said to be unbalanced when either of the
three-phase voltages are unequal in magnitude or the phase angle between the three phases is
not equal to 120°.

10. Unbalanced load: If the load impedances of the three phases are neither identical in
magnitude nor in phase angle, then the load is said to be unbalanced.

STAR AND DELTA CONNECTIONS
In order to reduce the number of conductors, the three windings are connected in the following
two ways: 1. Star or Wye connection 2. Delta or Mesh connection

STAR (OR) WYE CONNECTION:

In this connection, similar ends (start or finish) of the three phases are joined together
within the alternator as shown in Fig. The common terminal so formed is referred to as the
neutral point (N), or neutral terminal. Three lines are run from the other free ends (R, Y, B) to
feed power to the three-phase load.

R R

Vien

N(Neutral terminal)

Br— 4 ;/‘- oy
0B
The Figure represents a three-phase, four-wire, star-connected system. The terminals R,
Y, and B are called the line terminals of the source. The voltage between any line and the
neutral point is called the phase voltage (Vrn, Vyn, and Vgn), while the voltage between any two
lines is called the line voltage (Vry, Vys, and Vgr). The currents flowing through the phases are
called the phase currents, while those flowing in the lines are called the line currents. If the
neutral wire is not available for external connection, the system is called a three-phase, three-
wire, star-connected system. The system so formed will supply equal line voltages displaced
1200 from one another and acting simultaneously in the circuit like three independent single
phase sources in the same frame of a three-phase alternator.
i =1,snf
iy =1,,sm(8—-120°)
ip = 1,,sin(6—-240°)
ip +iy +ig =1, sm8+ [, sin(0-120°)+/,, sin(6—-240°) =0
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DELTA OR MESH-CONNECTION:
In this method of connection, the dissimilar ends of the windings are joined together. i.e.
R’is connected to Y, Y’ to B and B' to R as shown in Fig.

B . ;
o) AN R A
\ ™
Qr N Vay
QJ (o & Var
% ) g
5 . B
Bf y’ N ) () { ;; I
Vya
A4 4

The three line conductors are taken from the three junctions of the mesh or delta
connection to feed the three-phase load. This constitutes a three-phase, three-wire, delta-
connected system. Here there is no common terminal; only three line voltages Vry, Vys, and Vgr
are available.

These line voltages are also referred to as phase voltages in the delta-connected system.
When the sources are connected in delta, loads can be connected only across the three line
terminals, R, Y and B. In general, a three-phase source, star or delta can be either balanced or
unbalanced. A balanced three-phase source is one in which the three individual sources have

equal magnitude, with 120° phase difference.
ep — E,, sinf

ey = E, sin(6—120°)
ep = E, sin(H - 240°)
¢ptey +ep = E, sin@+E,, sin(0—120°)+ E,, sin(6—240°) = 0

VOLTAGE, CURRENT AND POWER RELATIONS IN A BALANCED STAR-CONNECTED SYSTEM

RELATION BETWEEN LINE VOLTAGE AND PHASE VOLTAGE:

. y I
Figure shows a balanced star-connected system R o——5—>
Since the system is balanced, the three-phase
voltages V., Vyy. and Vy, are equal in magnitude and ¥
. ) ! h
differ in phase from one another by 120°. AY 7
; ; ; ; Iy /
Let Van =Vinv =Vany =V y o—f > L@
where V/,;, indicates the rms value of phase voltage. Ver s
! - Zop ly Zon
Viy =V £0° Vys
\!}"_\' = V.Uf! £— 120 i ¥ ;B
, . Bo > >
\"5 N = 1’;).'?14_ 24(0°

Let Vey =V =Ver =V
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where V; indicates the rms value of line voltage.
Applying Kirchhoff’s voltage law,
Vry = Vin + Vay
= Vany — Vi
=V, £0° =V, £=120°
= (Vo + jO)—(=0.5V,, — jO.866 V)
=15V, +j0.866 1,
=BV, £30°
Similarly,  Vyz =Vyy + Vg = B Vo307
Vg = Vay + Vg =V37,,230°
Thus, in a star-connected, three-phase system, V; = \/5!*"},,;! and line voltages lead respective phase
voltages by 30°.
() Line voltage = VT, Vep,

(i)  Allline voltages are equal in magnitude and are displaced by 120°, and
(i) Al line voltages are 30° ahead of their respective phase voltages

RELATION BETWEEN LINE CURRENT AND PHASE CURRENT:
It is clear that line current is equal to the phase current.
IL=Iph=Ir=Iy=1Ip
It can be observed that the angle between the line (phase)
current and the corresponding line voltage is (30 + ¢)° for a lagging load.

Consequently, if the load is leading, then the angle between the line (phase)
current and corresponding line voltage will be (30 - ¢)°.

Phasor Diagram (Lagging Power Factor)
Figure shows the phasor diagram of a balanced star-connected inductive load.
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Power:
The total power in a three-phase system is the sum of powers in the three phases. For a
balanced load, the power consumed in each load phase is the same.
Total active power P =3 X power in each phase =3V, /,, cos ¢
In a star-connected, three-phase system,

t;
r

V,Uh = E

],ﬁf?=]f_

NG

where @ is the phase difference between phase voltage and corresponding phase current.

P=3x XILXCOSQ):\EVL [, cos ¢

Similarly, total reactive power QO =3V, [, sin 9= B Vil sin @

Total apparent power 8 =3V,,1,), = \B Vil

VOLTAGE, CURRENT AND POWER RELATIONS IN A BALANCED DELTA-CONNECTED SYSTEM

RELATION BETWEEN LINE VOLTAGE AND PHASE VOLTAGE:

The Figure shows a balanced delta-connected system. From Fig,, it is clear that only one phase
is connected between any two lines. Hence, the voltage between any two lines (VL) i.e. line
voltage is equal to phase voltage (Vph).

VL = Vph
In
R o T )\ -
Viay
Y o i
Veg
Vyg i |
B o) + T i_
ly

Since the system is balanced, all phase voltages are equal but displayed by 1200.
VRry = VyB = VBR = VL = Vph
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RELATION BETWEEN LINE CURRENT AND PHASE CURRENT:

Since the system is balanced. the three-phase currents /. /,,. and I, are equal in magnitude but differ in
phase from one another by 120°.

Let Iy =1Iyp = Ipp =1

where [, indicates rms value of the phase current.

ey =1,,20°
lyg = 1,,£-120°
IBR = 1’}-},&, £—240°
Let }IR:,‘F}:}!BZI;_
where /,; indicates rms value of the line current.
Applying Kirchhoff's current law,
Ip +1gg =g
Ip =gy — gz
= 1,y £0°—1 ,;, Z—240°
= [Iph + j0) —(—U.Sfph + j0.866 Ip;,}
=1.51,,—j0.8661,,
=~31,, £-30°
Similarly, Iy =lyz —Igy = \JGIP;; Z—30°
Ip =1Tpr —lyp = \Efph Z=30°

Thus, in a delta-connected, three-phase system, /; = ﬁ!{.,h and line currents lag behind the respective
phase currents by 30°.

PHASOR DIAGRAM (LAGGING POWER FACTOR):
The Figure shows the phasor diagram of a balanced delta connected system.

Page—9



Power:
P =3V, 1, cos0

In a delta-connected, three-phase system,

/ _ , _
P=3xV, x—!'xctmﬂ): \E Vil cos ¢

V3
Total reactive power QO =3V ;[ 5 sin ¢ = NG Vi1, sin ¢

Total apparent power § =3V ;1 ), = J3 Vilg

BALANCED Y/A AND A/Y CONVERSIONS

Any balanced star-connected system can be converted into the equivalent delta-connected system and vice versa.
For a balanced star-connected load,
Line voltage =V,
Line current =/,
Impedance/phase = Z,

v
I"'f-,,.'; _ L

NG
{ ph =1 I

| h |
7 ph L

" Bl

For an equivalent delta-connected system, the line voltages and currents must have the same values as in
the star-connected system, i.e.,
Line voltage =V,
Line current =/,
Impedance/phase = Z,

Vb#r =V,

Thus, when three equal phase impedances are connected in delta, the equivalent star
impedance is one-third of the delta impedance.
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COMPARISON BETWEEN STAR AND DELTA CONNECTIONS

Star Connection Delta Connection

L.V, =3V, L. Vi =V,

3 _

2. Ip =1y, 2. I, =31,

3. Line voltage leads the respective phase | 3. Line current lags behind the respective
voltage by 30°. phase current by 30°

4. Power in star connection is one-third of | 4. Power in delta connection is 3 times of
power in delta connection. the power in star connection.

5. Three-phase, three-wire and three- | 5. Only three-phase, three-wire system is
phase, four-wire systems are possible. possible.

6. The phasor sum of all the phase currents | 6. The phasor sum of all the phase voltages
IS Zero. IS Zero.

ANALYSIS OF THREE PHASE BALANCED LOAD CIRCUITS

a) Balanced Three-Phase system - Delta load:

The Figure (a) shows a three-phase. three-wire, balanced system supplying power to a
balanced three-phase delta load. The phase sequence is RYB.
Let us assume the line voltage Vry = V£00 as the reference phasor. Then the three source
voltages are given by
Vey =V Z20°V
Vg =V Z-120°V
Vo = V222400V
These voltages are represented by phasors in Fig(b). Since the load is delta-connected,
the line voltage of the source is equal to the phase voltage of the load. The current in phase RY,

Ir will lag (lead) behind (ahead of) the phase voltage Vry by an angle ® as dictated by the
nature of the load impedance. The angle of lag of Iy with respect to Vyg, as well as the angle of

lag of Ip with respect to Ver will be ® as the load is balanced. All these quantities are
represented in Fig.(b).
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Var "
R
- /
A A l - A
Vg c-240° S z00 M P, N B
VRY~'°' e 2P I? < % ‘ */,’ = /. ’ - VRY
A\ 20 0 \\I 30° - ’R
y - \ -~
A I} Gl B ~e ¥ Iy \
Vya £Z-120° Y ‘.‘
V- X P 1
»
’2 VYB (b) e "

(a)
If the load impedance is Z £ ¢, the current flowing in the three load impedances

are then

vwko _v ,
7216 Z
- Vig £=120 _

z[¢
= Ymd=2 V., e
. zZl e z

The line currents are V3 times the phase currents, and are 30° behind their

respective phase currents.
. Current in line 1 is given by

£Z-120°-¢

NS

=43 ‘%| Z(~- @ - 30°), or Iy — I (phasor difference)

Similarly, the current in line 2

L=v3¥
2 Z

Z(- 120 - ¢ 30°),

or Iy — I, (phasor diference) = V3 .g[ Z(- ¢- 150)°
= V3 '%l Z(-240 - ¢~ 30)°, or I — I, (phasor difference)

= V3 [ 2(~-270-9)

L4
Z
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b) Balanced Three-Phase system - Star load:

The Figure(a) shows a three-phase, three-wire system supplying power to a balanced
three phase star connected load. The phase sequence RYB is assumed.

In star connection, whatever current is flowing in the phase is also flowing in the line.
The three line (phase) currents are IR, ly, and Ig.

le R
A ] IR
A
Van 226
V, V.
RY ZZo % YN
V,
v lg B » BN 2z > ly
A / Y
Vys 8

v (a)

Vans Vyy and Vi, represent three phase voltages of the network, i.e. the
voltage between any line and neutral. Let us assume the voltage Vy, = VZ0° as
the reference phasor. Consequently, the phase voltage

Ven =V £0°
Vin =V £-120°
Vgy = V £~ 240°

L
I ol T =’Kl L
ZLZ¢ ZLQ Z
o
1y= V)_’N = K_-ﬂ= Z—{ é— 120°—¢
ZZ¢ ZL¢ 4
I, = Ven _ V£7240 _ ‘_V_l Z-240° - ¢
Zs9¢ ZL ¢ 4
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As seen from the above expressions, the currents, /, /y and /g, are equal in
magnitude and have a 120° phase difference. The disposition of these vectors is
shown in Fig.((b). Sometimes, a 4th wire, called neutral wire is run from the
neutral point, if the source is also star-connected. This gives three-phase, four-
wire star-connected system. However, if the three line currents are balanced, the
current in the fourth wire is zero; removing this connecting wire between the
source neutral and load neutral is, therefore, not going to make any change in the
condition of the system. The availability of the neutral wire makes it possible to
use all the three phase voltages, as well as the three line voltages. Usually, the
neutral is grounded for safety and for the design of insulation.

Ven
N
. I
\\ 4 B
\
\
\ }
\ ¢
L
N R
ey “/ N/ Vm
)
5 /
Y
,‘// ,R
¥y (b)
VYN

It makes no difference to the current flowing in the load phases, as well as to

the line currents, whether the sources have been connected in star or in delta,
provided the voltage across each phase of the delta connected source is /3 times
the voltage across each phase of the star-connected source.
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PHASE AND LINE VOLTAGES/CURRENTS FOR BALANCED THREE-PHASE SYSTEMS

Connection Phase voltages/currents Line voltages/currents
Y-Y Von = V,/0° V., = V37,/30°

7 — f_ o
Vi = Vp/—120

T - ! O
Ven = Vp/+120
Same as line currents

Y-A A\ /0°

Vi, = V,/—120°
Vo = VPK-FIEIJD
I8 = Vip/Zx
Izc = Vac/Za

Iy = ‘?C}i_f{ Z,

I
o

A-A V= V,/0°
Vo =V, /—120°
V= V,/+120°
Lig = Vap/Za
Igc = Vie/Za
Iey = me{Zﬁ

A-Y Vi = V,/0°
Vi = V,/—120°
Veq = Vp/+120°

Same as line currents

V,. = V,,/—120°
V.o = Vap/+120°
I, = Vau/Zy

I, =1/—120°
I.=1,/+120°

c

L]

V. /30°

o

Vo =V =V

Vie = Vpe = Vpp/—120°
Vee = Veu = Vi /+120°
I, = IL;\3/-30°

I, =1,/—120°
I.=1,/+120°

c

Same as phase voltages

I, =1,\V3/-30°
I, =1,/—120°
I.=1/+120°

c

Same as phase voltages

v,/—30°

"LEZ ¥
I, =1,/—120°
I.=1,/+120°

I, =
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ANALYSIS OF THREE PHASE UNBALANCED LOAD CIRCUITS

An unbalance exists in a circuit when the impedances in one or more phases differ from
the impedances of the other phases. In such a case, line or phase currents are different and are
displaced from one another by unequal angles. It is enough to solve problems, considering one
phase only on balanced loads; the conditions on other two phases being similar. Problems on
unbalanced three-phase loads are difficult to handle because conditions in the three phases are
different. However, the source voltages are assumed to be balanced. If the system is a three-
wire system, the currents flowing towards the load in the three lines must add to zero at any
given instant. If the system is a four-wire system, the sum of the three outgoing line currents is
equal to the return current in the neutral wire. In practice, we may come across the following
unbalanced loads:

(i) Unbalanced delta-connected load
(ii) Unbalanced three-wire star-connected load
(iii) Unbalanced four-wire star-connected load..

i) UNBALANCED DELTA-CONNECTED LOAD:
The Figure shows an unbalanced delta-load connected to a balanced three-phase supply.

R N
-
Iy
b
IB’ 21401 IR
2340
2 L
B -
-
Iy > Iy
Y -
-

2
The unbalanced delta-connected load supplied from a balanced three-phase supply does
not present any new problems because the voltage across the load phase is fixed. It is
independent of the nature of the load and is equal to the line voltage of the supply. The current
in each load phase is equal to the line voltage divided by the impedance of that phase. The line
current will be the phasor difference of the corresponding phase currents, taking Vry as the
reference phasor.
Assuming RYB phase sequence, we have

lfﬁl} =V ZGO V. IJ'}B =V Z— Izﬂn V. VBR =V Z_ 2409 Vs
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Phase currents are

Vay V £0 4
IR: ’_8_).__. = — = 4 é_ al A
Z, L9 Z,Z¢, |Z
Vy V £— /
ly= —2— = 0 =L & 120°-¢, A
2,4 9, Z,4 9, Z
V V £-=240 i
Ip= —28 = =L—£—24O°—¢} A
Z3 L 9; Zy L9, Zy

The three line currents are
I, = Iy — Iy phasor difference
I, = I, - I, phasor difference
I, = I, - I, phasor difference

ii) UNBALANCED FOUR WIRE STAR-CONNECTED LOAD:
The Figure shows an unbalanced star load connected to a balanced 3-phase, 4-wire

supply.

—— P — — —— R ____________
Ia
Balanced se ]
supply sona Vin Z,2¢,
Ns Neutral wire J ”l
Iy==(lg+ly+lg) Z, L0y Vyn
A A ' £
\ p .
v ™
I BN
- b 2,2,

-
""f

The star point, Ni, of the load is connected to the star point, Ns of the supply. It is the
simplest case of an unbalanced load because of the presence of the neutral wire; the star points
of the supply Ns (generator) and the load Ny, are at the same potential. It means that the voltage
across each load impedance is equal to the phase voltage of the supply (generator), i.e. the
voltages across the three load impedances are equalized even though load impedances are
unequal, However, the current in each phase (or line) will be different. Obviously, the vector
sum of the currents in the three lines is not zero, but is equal to neutral current. Phase currents
can be calculated in similar way as that followed in an unbalanced delta-connected load.

Taking the phase voltage Vrn = V£0° V as reference, and assuming RYB phase sequences, we
have the three phase voltages as follows:

Van =V 20°V, Vyy=V £=120°V, Vgy= V £-240° V
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The phase currents are

V V £0°

Ip= 2L = A:'L Z-¢, A
Z, 7, 49, Z,

1 Viw _V£-120 |V Z£-120°— 6, A

"z,  Zz9¢, Z, 2

-

18= Vin ~ Vé_240 A= ’,_ Z-240° - ¢, A

Z} Z\é ¢} | Zl

Incidentally, I, /yand I are also the line currents; the current in the neutral
wire is the vector sum of the three line currents.

iii) UNBALANCED THREE WIRE STAR-CONNECTED LOAD:

In a three-phase, four-wire system if the connection between supply neutral and load neutral is
broken, it would result in an unbalanced three-wire star-load. This type of load is rarely found
in practice, because all the three wire star loads are balanced. Such system is shown in Fig.

R R
s
21 éol
N N
S. ZJ éo‘ 22 /o
<92
B g% ;
, B Y

SUWV or l3 Load
alternator

Note that the supply star point (Ns) is isolated from the load star point (N.). The
potential of the load star point is different from that of the supply star point. The result is that
the load phase voltages are not equal to the supply phase voltage; and they are not only
unequal in magnitude, but also subtend angles other than 120° with one another. The
magnitude of each phase voltage depends upon the individual phase loads. The potential of the
load neutral point changes according to changes in the impedances of the phases that is why
sometimes the load neutral is also called a floating neutral point. All star-connected,
unbalanced loads supplied from poly-phase systems without a neutral wire have floating
neutral point; the phasor sum of the three unbalanced line currents is zero. The phase voltage
of the load is not 1/v3 of the line voltage. The unbalanced three-wire star load is difficult to
deal with. It is because load phase voltages cannot be determined directly from the given
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supply line voltages. There are many methods to solve such unbalanced Y-connected loads.
Two frequently used methods are presented here. They are

(i) Star-delta conversion method, and

(ii) Millman's theorem method

(iii) Loop or Mesh Method

STAR-DELTA (or) DELTA-STAR CONVERSION METHOD

While dealing with currents and voltages in loads, it is often necessary to convert a star
load to delta load and vice-versa. The conversion formulae (like as using resistances) can be
applied even if the loads are unbalanced. Thus, considering Fig.(a), star load can be replaced by
an equivalent delta-load with branch impedances as shown.

R R
Zr Zgr Zry
% N
Zy B Rl Y
B Zve

(a) (b)
Delta impedances, in terms of star impedances, are

_Zpiy+ZyZg+ZyZ,

ZRY 7
B
plZy+ZyZp+2giy
Zyp = -
i
_ZplZy+ZyZp+ 232,
ZBR" 7
Y

Consider Fig.(b), delta load can be replaced by an equivalent star-load with branch impedances
as shown.

- Zry Zpr
Zpy + Zyp + Zpy

zZ,= Zpy Zyy
Zpy + Zyg + Zpp

Z,= Zpr Zyg

B L b T
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If the three-phase load is balanced, the balanced star-connected load having an
impedance Z1 in each phase as shown in the fig. The equivalent delta-connected load have an
impedance of Z2 in each phase as given by

72 =311
The star impedance in-terms of delta as Z1 = Z2/3

1R

(a)

(b)

MILLMAN’S METHOD OF SOLVING UNBALANCED LOAD

Consider an unbalanced wye (Y) load connected to a balanced three-phase supply as
shown in Fig.(a). Vro, Vyo and Vgo are the phase voltages of the supply. They are equal in
magnitude, but displaced by 120° from one another. Vro, Vyo and Vgo, are the load phase
voltages; they are unequal in magnitude as well as differ in phase by unequal angles. Zr, Zy and
Zg are the impedances of the branches of the unbalanced wye(Y) connected load.

/
R o R

-

(a)
The Figure(b) shows the triangular phasor diagram of the complete system. Distances
RY, YB and BR represent the line voltages of the supply as well as load. They are equal in
magnitude, but displaced by 1200. Here ‘O’ is the star-point of the supply and is located at the
centre of the equilateral triangle RYB. O’ is the load star point. The star point of the supply
which is at the zero potential is different from that of the star point at the load, due to the load
being unbalanced. O’ has some potential with respect to O and is shifted away from the centre
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of the triangle. Distance 0'O represents the voltage of the load star point with respect to the
star point of the supply Voo.

(b)
V.., is calculated using Millman’s theorem. If ¥, is known, the load phase

voltages and corresponding currents in the unbalanced wye load can be easily

determined.
According to Millman’s theorem, ¥V, is given by
" Vio Yo +Vyo Yy +Vp, Yp
oo Yo+ Y+

where the parameters Y, Y, and Y, are the admittances of the branches of the
unbalanced wye connected load. From Fig.(a), we can write the equation

Vo= Vao' + Voo
or the load phase voltage
Vao =

o

VRo = Vo'o

Similarly, Vy, = Vy, - V,, and Vg, = Vp, — V¥, can be calculated. The line
currents in the load are
VRO'

R

IR e - (VRo = Vo'o) YR

Vy,
"rl"= -t =(Vl"a_ Vo'o) YY
zl"

V .
Is= =" =Vpo= Voo Vs
B
[NOTE:
The unbalanced three-wire star-connected loads can also be determined by using Kirchhoff’s
laws and Maxwell’s mesh or loop equation.]
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LOOP (OR) MESH METHOD OF ANALYSIS

Consider an unbalanced three wire star connected load supplied by a balanced source

with a phase sequence of RYB as shown in Fig. The three line currents are Ig, Iy and Ig with the
directions as indicated in the figure. The line currents can be obtained by mesh current method.

i
R - |

Zr

Loop-1

I
Lnop)

Assuming two loop currents I1, I2 in clockwise direction, we have the following equations.
Applying KVL for the 1% and 2™ loops
Vey = LiZg + (I, - b)Zy
Vyg= (- 1)Zy + I,Zy
Where Vgy and Vyp are line voltages from balanced three phase supply

VRY — VAOO
Vyg = VZ-120°
Vgr = VZ-240°

V is the magnitude of line voltage
Above equations can be written in matrix form as

[ZR +Zy —Zy H"l]_{vﬁr}
—Zy Zg+Zy || I Vyg

By using crammers rule we can form

A (Zp+Zy —Zy o |[Ver o %y
(Z. +Z, V

Az — R ¥ R}’:|
L _ZY VYR
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From which we can find

The line currents which are also the phase currents /Iy, Iy and I are calculated
from the mesh currents /; and /,

IR: !|
Iy=1-1,
Ig=-1

It Zp, Zy and Zy are phase impedances, the phase voltages are obtained by
multipying the phase currents with the respective phase impedances.

Thus
Vi = Vey = IZg
Vy= Vyv = IyZy
Vp= Vpny = Iply
Total power consumed in all three phases is given by
= IVR' ”R | C()S(DR + |Vy| ”yl COS(py'F |V”l IIRI COS(D[;
where @ is the phase angle between Vj and /I
where @y is the phase angle between Vy and Iy
where @p is the phase angle between Vg and /I

MEASUREMENT OF POWER IN THREE-PHASE CIRCUITS

In a three-phase system, total power is the sum of powers in three phases. The power is
measured by wattmeter. It consists of two coils: (i) Current coil, and (ii) Voltage coil. Current
coil is connected in series with the load and it senses current. Voltage coil is connected across
supply terminals and it senses voltages.

There are three methods to measure three-phase power:
1. One-wattmeter method 2. Two-wattmeter method 3. Three-wattmeter method

ONE-WATTMETER METHOD

In this method, only one single-phase wattmeter can be used to measure the total three-
phase power. In this method, the current coil (CC) of the wattmeter is connected in series with
any phase and the pressure coil (PC) is connected between that phase and the neutral, as
shown in Figure. One-wattmeter method has a demerit that even a slight degree of unbalance in
the load produces a large error in the measurement. In this method, one wattmeter will
measure only the power of one phase. Hence, the total power is taken as three times the
wattmeter reading.

Total power = 3 x Vph Iph cos®
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Single-phase

Wattmeter Ro
R /(‘G%:O‘_R Zp th
T Three-phase Y O '
balanced
Load
Three-phase N Bo T 000
balanced supply ‘
Yé “ w

BY

For Delta-Load

For Star-Load

TWO-WATTMETER METHOD

This method requires only two wattmeters to measure three-phase load for balanced as
well as unbalanced loads. In this method, two wattmeters are connected in two phases and
their pressure coils are connected to the remaining third phase, as shown in Figure.

In I

/ /
Beo E Bo E
by Iy PC
Y Y cc_/ W,

This method of measurement is useful for balanced and unbalanced loads.
Let us consider the measurement of three-phase power of a star-connected load using
two single-phase wattmeters as shown in Figure(a). We will calculate the power measured by

the two wattmeters separately. Let W1 and W2, respectively, are the two-wattmeter readings.
The current flowing through the current coil of wattmeter W1 is Ir.
The voltage appearing across its pressure coil is VRrs.

The wattmeter reading will be equal to W1 = Vgg Ir cos of angle between Vgrp and Ir.
Similarly, the wattmeter reading W will be equal to W; = Vyg Iy cos of angle between Vyg and lv.
We will now draw the phasor diagram, and calculate W1 and W>.
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From the phasor diagram, as shown in Figure(b), we get the equation as follows:

W= Vpplrcos(30-9) = NE Vep [; cos(30—@) =V, I, cos(30—-¢)

W,y =Vygly cos(30+9) = \/f_"j"fph [, cos(30+ @)=V, 1 cos(30+9)

We know that the total power in a three-phase circuit is 3V, I, cos @or equal to J3 Vi1, cosg.
Let us add the two wattmeter readings, that is, W, and W.,.

=W, + W,y =3 Vi Ly, €05 (30— 0) +~3 Vo Iy, cOs (30 + 9)

— J?_,I"Ph.fph [cos (30 —@) +cos (30+9)]

=3 Ven I pp 2€0s @ cos 30°
G Vgl 260563

=31 Phiphbcosgﬂ?

W, +W, = \/:'_’VL"{L cos @

Thus, it 1s proved that the sum of the wattmeter readings is equal to the three-phase power.
Now, when the two wattmeter readings are subtracted from each other, we obtain the follow-
ing form:
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W, =W, = J3 Vonlpy[€0s (307 — @) —cos(30° + @)
=3 Vonlpy 2sin@sin 30°

3O, =W,) =3V, I, sing
V3 =Wy)= 3V, 1, sing

by Dividing equation

N3W, =W,y N3V I sing
Wi+W, 3V I, cosg
L3 =)

W, + W,

L ABOW, - W, )}

W, + W,

tan @

@ = tan

Power factor  €0s @ = cos|tan

Note:

J3(W, =W, ))}

For Leadi er fac cos @ = cosltan™' { —
or Leading Power factor ¢ = cos ( W+ W,

EFFECT OF CHANGE IN POWER FACTOR ON WATTMETER READINGS

Let the wattmeter readings as follows:
W, =3 Vi I, €05 (30 — @)
W, = \/:1 Vel p, €08 (30 + @)
i) At unity power factor, when cos ¢= 1, that is, ¢=0
W, =3 Vo Ip, c0830°
Wy =3 VI py, c0s30°

Thus, at power factor = I, both the wattmeter readings will be positive and of equal value.
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i) At 0.5 power factor, cos @= 0.5, that is, ¢ = 60°

W, = VEI"PhIPh cos(—=307)
=3 Viy Ipy, €08 30°
Wy =3 VoyIp, €05(30° +60°) =0

Thus, at power factor equal to 0.5, one of the wattmeters will give zero reading.
i) When the power factor is less than 0.5, that is. > 60. Let us observe the wattmeter readings.

W, =3 Ven Iy cos (30— 9)
Wy = 3 Vpy Iy cos (30+9)

When ¢> 60, W, will give positive readings but IV, will give a negative reading. Thus, for
power factor less than 0.5, that is, for ¢ > 60°, one of the wattmeters will give a negative
reading.

iv) When the load is purely inductive or capacitive, the power factor will be zero, that is, g=90°

W, =V I, cos(30°=90°) =V I, cos60°
W, =V, I, cos(30°+90°) = —F I, sin30°

Both the wattmeters show equal but opposite readings. Hence, the total power consumed
will be zero.

THREE-WATTMETER METHOD

This method is used for balanced as well as unbalanced loads. Three wattmeters are
inserted in each of the three phases of the load whether star connected or delta connected as
shown in Fig. Each wattmeter will measure the power consumed in each phase.

W1
R o @
L@L 2,
No ®
th an
W
Y o [ (®J
W,
Bo L

For Balanced load, W1 = W2 = W3
For Un-balanced load, W1 # W2 # W3
Total power, P = W1 + W2 + W3
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MEASUREMENT OF REACTIVE POWER

The total reactive power = V3 VLILsin®. Reactive power in a balanced three-phase load
can also be calculated by using a single wattmeter.

As shown in Fig.(a), the current coil of the wattmeters is connected in any one line (R in
this case), and the pressure coil across the other two lines (between Y and B in this case).
Assuming phase sequence RYB and an inductive load of angle @, the phasor diagram for the
circuit is shown in Fig.(b).

I : :
) -1 PR - 246

ZZ¢
ZZ¢

VVB
(a) (b)

From Fig.(a), it is clear that the wattmeter power is proportional to the product of
current through its current coil Ir. voltage across its pressure coil, Vyg, and cosine of the angle
between Vyg and Ig.

Vie=Vin=Ven =V,
From the vector diagram the angle between Vyg and Ir is (90 - ®@)°
Wattmeter reading = Vy, I, cos (90 - ¢)°

=V, I, sin & VAR

[f the above expression is multiplied by V3, we get the total reactive power in the load.
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SOLVED PROBLEMS
1) Three equal impedances, each of (8 + j10) ohms, are connected in star. This is further
connected to a 440 V, 50 Hz, three-phase supply. Calculate (a) phase voltage, (b) phase angle,
(c) phase current, (d) line current, (e) active power, and (f) reactive power.
SOL:

Z, =8+/10)Q, V, =440V, [ =50Hz
For a star-connected load,
, nee valtaoe V 440
(a) Phase voltage : L — 95403V

" ET B

(b) Phascangle 7 , =8+ /10=12.81251.34°Q

7, =12.81Q
0 =51.34°
(¢) Phase current Vo 254.03
oy = = ~19.83A
Zy 1281

(d) Linecurrent /; =1,,=1983 A
(e) Active power P =+3V,1, cosQ = V3 % 440 %19.83 x cos(51.34%) = 9.44 kW
(f) Reactive power Q=311 sin ¢ = /3 x440x19.83 xsin(51.34°) = 11.81 kVAR

2) Three similar coils A,B, and C are available. Each coil has a 9 Q resistance and a 12
reactance. They are connected in delta to a three-phase, 440 V, 50 Hz supply. Calculate for this
load, the (a) phase current, (b) line current, (c) power factor, (d) total kVA, (e) active power,
and (f) reactive power. If these coils are connected in star across the same supply, calculate all
the above quantities.
SOL:

R=9Q, X, =12Q, V; =440V, [ =50Hz

For a delta-connected load,
(a) Phase current V, =V, =440 V

L, =R+ jX; =9+ /12=15 2453137 Q

Zy=15Q
6 = 53.13°
Vi 440
[, =—=T""-2933A
Z;.\.I'i' ID

Page—Q 9



(b) Line current I, = \/5 Iy = \Ex 2933=508 A

(¢c) Power factor pt =cos ¢ =cos (53.13°) = 0.6 (lagging)

(d) Total kVA S = \ﬁ Vi, = \Ex 440 x50.8 =38.71 kVA
(e) Active power P=43 Vil, cos ¢ = V3 x440x50.8% 0.6 = 2323 kW
(f) Reactive power 0= \/'E Vil sin ¢ = \Ex 440 x 50.8 x sin (53.13°) =30.97 kVAR

If these coils are connected in star across the same supply,
(a) Phase current

V, =440V
Z,, =150
v, 440

25403V

Vph = —== = =

BB
l"'JJ 25403

== 1694 A
Za.,,r! 15

(b) Line current I =1,,=1694 A

(c) Power factor of = 0.6 (lagging)

(d) TotalkVA S=3V,1, =3 x440x16.94 =12.91 kVA
(¢) Active power P=\BV,I, cos =3 x440x16.94 x0.6 = 7.74 kW

(f) Reactivepower ) 3, sin 6 = /3 x 440 x16.94 x sin(53.13°) = 12.33 kVAR

3) A 415V, 50 Hz, three-phase voltage is applied to three star-connected identical impedances.
Each impedance consists of a resistance of 15(), a capacitance of 177uF and an inductance of
0.1H in series. Find the (a) power factor, (b) phase current, (c) line current, (d) active power,
(e) reactive power, and (f) total VA. Draw a neat phasor diagram. If the same impedances are
connected in delta, find the (a) line current, and (b) power consumed.
SOL:
Vi =415V, [ =50Hz, R=15Q, C=177uF, L=0.1H
For a star-connected load,
(a) Power factor  y —oxf =27x50x0.1=3142Q
Xe = l,_= : (=17‘98 Q
2rfC 2 x50x177x107"
Z,, =R+ jX;—jXc =15+ 3142 j17.98 =15+ j13.44 = 20.14 £41.86° Q
7,y =20.14Q
¢ =41.86°
pf = cos ¢ = cos(41.86%) = 0.744 (lagging)
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(b) Phase current 41

v

e

BB
Vo 239.6

[, == =119A

: o 20.14

(¢) Line current Iy =1,=119A

Ln

A

=239.6V

N

(d) Active power P=x3V,1, cos 0= V3% 415x11.9%0.744 = 6.36 kKW
(e) Reactive power (= J3 Vil sin ¢ = J3x415%11.9 xsin(41.86°) = 5.71 kVAR
(f) Total VA Sz\f’gl"ﬁfﬁ = J3x415%11.9=8.55kVA

The phasor diagram is shown in Fig,

;— Vyg ¢=41.86°
[f the same impedances are connected in delta,
(a) Line current V, =V, =415V
Zy, =20.14Q
Vo 415
1, == =20.61 A

Z,, 20.14
I, =31, =/3x20.61=3569 A

(b) Power consumed P = \/g Vil, cos o= xﬁ x415x35.69 x0.774 =19.09 kW

4) In the two-wattmeter method of power measurement for a three-phase load, the readings of
the wattmeter are 1000 W and 550 W. What is the power factor of the load?
SOL:
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H"I = 1000 W, Wz =550W
Power factor of load

W, —w
cos@ = costan~ 1\/_—
W, +W,

1000 —550
—COSTHI’I_I\/_—
1000+ 550

B
cos@ =costan 0.5=0.9

5) In the measurement of three-phase power by the two wattmeter method, for a certain load,
one of the wattmeters reads 20 kW and the other 5 kW after the current coil connection of one
of the wattmeters has been reversed. Calculate the power and power factor of the load.

SOL:

W, =20kW
W,=—5kW
P=W,+W,=20-5=15kW

W, —Ww,
Power factor of the load = costan™ '7”‘\/:1
W, +W,
1 20—(-5)
=costan | ————
20+(-5)

N2 :
=0.3273 lagging

6) In two wattmeter measurement, the load connected was 30 kW at 0.7 pf lagging. Find the
reading of each wattmeter.
SOL:

We know that the reading ©f the two wattmeters will be \@I»"Phiph cos (30— ¢@)
and \/3 Venlpp €08 (30+¢@), respectively.

For star connection, ﬁ Vep =V and Iy, =1,

The total load P=30kW

Power factor cos ¢=0.7 lagging

Phase angle @=cos™! (0.7) =45.57° lagging
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VoI = P in KW %1000
J3 cos @
30 <1000
~ %07
Reading of wattmeter W, =V, [, cos (30 — @)
=24743.6 cos (30 —45.57°)
=23.835kW

=24743.6 VA

=V, I, cos (30 + @)

=24743.6 cos (30 + 45.57°)
=6.165kW

Thus, the total power is calculated as P= W, + W, =23.835 + 6.165
=30kW

Reading of wattmeter W

3
F4

7) Three equal impedances, each consisting of R and L in series are connected in star and are
supplied from a 400 V, 50 Hz, three-phase, three-wire balanced supply system. The power
input to the load is measured by the two-wattmeter method and the two wattmeters read 3 kW
and 1 kW respectively. Determine the values of R and L connected in each phase.

SOL:

Reading of wattmeter 1~ W, =3kW

Reading of wattmeter 2 W, =1kW

Total power P=W,+W,=3+1=4kW
. . -1 .I"i"rl — H’;’!
Power factor of the circuit, cos @ = cos tan ﬁw’r
Vi—=W,
4 3-1
= costan”' ——+/3
3+1
= cos 40.89
=0.7559 lagging
, P
Line current [/, = ————
\/5 V) cos@
4 <1000 _
= = 7.64 A= Phase current /
V3 % 400%0.7559
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Ve 40043

Impedance of the circuit per phase Z = =
[ 7.64

=30.237Q
R=Z7Zcos ¢=30.237x0.7559 =22.856 Q2

Reactance per phase X, = NZ? - R?

= (30.237)% — (22.856)
=19.796 Q

X,
2 f
19.796

= m =0.063H =63 mH

Inductance per phase L =

8) A three-phase 400 V, 50 Hz supply is connected across a three-phase load as shown in
Figure. Calculate the equivalent delta load.

o R

SOL:
The equivalent delta load is shown by assuming clockwise phase sequence, that is, phase

sequence of RYB as shown in Figure are calculated as
R
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YA
Zoy =L+ 2y + 271

B

5 Nl §
3+1_i3+(z-+,f3}{1 j3)
’ 3+ j4

=2+

.l
1= ) a _ 3
22432 ftan 2xA1P+3% Z—tan”'2
=3+ ]

3 L] _ 4
3*+4° Atan IT
3

3.61 £56.3°%3.162 £ —66°

5 £53.13°
+2.23/-62.83°
+2.23[c0s62.83° — jsin62.83]
4.02—;198=4482-26"
7,7,

R

[l
tod
+

)
J
)

22
22

J

(1-/3)(3+j4)

=1-j3+3+ 4+
2+j3

] — 1 —_
12+3% /—tan la_x 32 +4% stan™!

J

4
3

=4+ )1+
22 +3% Ztan™2
3.162 £—-66°%x5 £53.13°
3.6 £58°

=4+ j1+439/—-66°+53.13°-58°

=4+ j1+493 £/ -T1.87°

=4+ j1+4.93(cos 71.87°— j T1-87°).

=5.53-;353.3=353.4/-89°

VAVAY

Zy

=4+ jl+

3+ j4)(2+ j3)
1-/3
. 5/53.13°x3.61£56.3°
=5+ j7+ : —
: 3.1622 -66"
18.05 £109.43
3.1622 -66°
=5+ j7+5.72 Z/175.43°
=5+ j7+5.73(cos175.43°+ jsin175.43%)
=—-0.707+ j7.46 =7.49 295 .4°

=3+ j4+2+ 3+

=5+ 7+
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9) Three impedances Z1=20430°(, Z>=40460° Q and Z3=10£-90° ) are delta connected to a
400V, 3-phase system as shown in fig. Determine a) Phase currents b) line currents and c) total
power consumed by the load.

R—— e e,

: /

l‘s f
10£-90°Q /Z3/ N2\ 20230° Q
S
B - 1%
“h b 40s60°0

Y -

b

SOL:
The three phase currents are /g, /y and /g, and the three line currents

are ly, I, and /5. Taking Vgry = V £0° V as reference phasor, and assuming RYB
phase sequence, we have
Vgey =400 £0°V, Vg =400 £-120°V,
Vgr = 400 £-240° V
Z, =20 £30° Q =(17.32 + j10) Q;
Z, =40 £60° Q= (20 +j34.64) Q,
Z2,=104-90°Q=(0-/10) Q
_ Vgy _ 400£0° . oA
= m ® 20 £30° A=202-30°A =(17.32-j10) A
. Vg _ 400 £-120°
Z,2¢, 40 Z60°
_ Ver _ 400 £-240°
Zy L0, 10 £-90°
Now the three line currents are
Iy =lg=1g=[(17.32 - j10) ~ (- 34.64 - j 20)]
=(51.96 +j10) A=52.91 £10.89° A
L=1ly=lg=[(-10 +/0)-(17.32 - j10)]
=(-27.32+j10) A=29.09 £159.89° A
Iy = Ig = Iy = [(~ 34.64 — j20) - (- 10 + j 0)]
=(-2464 -j20)A=31.73 Z-140.94° A

A=10 £-180°A = (- 10 + jO) A

A=40 2-150°A =(-34.64 - j20)A

lg
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(ili) To calculate the total power, first the powers in the individual phases are
to be calculated, then they are added up to get the total power in the
unbalanced load.

Power in R phase = 1% x Rg = (20)? x 17.32 = 6928 W
Power in Y phase = /3, x Ry = (10) x 20 = 2000 W
Power in B phase = /3 x Rg = (40)>x0=0

Total power in the load = 6928 + 2000 = 8928 W

10) An unbalanced four-wire, star connected load has a balanced voltage of 400V, the loads are
71=(4+j8)Q, Z>=(3+j4)Q, Z3=(15+j20)Q
Calculate i) line currents ii) Current in the neutral wire iii) the total power
SOL:
Z, =(4+8)Q; Z,=(3+4)Q; Zy = (15 + j20) Q
Z, =8.94 £63.40°Q; Z,=5 £53.1° Q; Z, = 25 £53.13° Q
Let us assume RYB phase sequence.

The phase voltage Vg, = .‘.‘%Q. =230.94 V.

Taking Vg as the reference phasor, we have
Van = 230.94 £0°V, Vy, = 23094 £-120°V
Vgn = 230.94 £-240°V

The three line currents are

() lp= VAN _ 23094 £0° ,\ _ o543 ,_g34°A
Z, " 8.94 2634°

fy= Y 230942 120 5 _ 46 188 £ 173.1° A
Z, 57 531

lg= Yon 230942 =240 o _ g3 , 293 13°A
Z, 2525313

(ii) To find the neutral current, we must add the three line currents. The
neutral current must then be equal and opposite to this sum.

Thus, Iy==g+ly+lg)
= - (25.83 £~ 63.4° + 46.188 /— 173.1° + 9.23 /- 293.13°) A
Iy = - [(11.56 — j23.09) + (- 45.85 — j5.54) + (3.62 + j8.48)] A.
Iy = - [(- 30.67 — j20.15)] A = (30.67 + j20.15) A
Iy = 36.69 £33.30° A
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(iii) Power in R phase = /% x Rg = (25.83)° x 4 = 2668.75 W
Power in Y phase =/ x R, = (46.18)? x 3 = 6397.77 W
Power in B phase = /4 x Rg=(9.23)° x 15 = 1277.89 W

Total power absorbed by the load
= 2668.75 + 6397.77 + 1277.89 = 10344.41 W

11) A symmetrical 440 V, 3-phase system supplied a star-connected load with the branch
impedances Zr=10 ), Zy= j5(), Zp=-j5Q as shown in Fig. Calculate line currents and voltage
across each phase impedance by Millman’s theorem. The phase sequence is RYB.

R In

—

o

WS
Y

-
@

SOL:
V=440V, Zz=10Q, Zy=/5Q, Zz=-;5Q

For a star-connected load.,

Let O be the neutral point of the supply system.

Let Vg =254.0320°V
Vyo = 254.03/ —120° V
Vio = 254.032 —240° V
11 |

Yp=—=—=——=0.120°0
Zp, 10 10£0°
11 l .
Yy=—=—=——=02/-90°0
Zy j5  5290°
| | 1 ;
Yy=—=—= - =022£90° 0

Zy —j5 52-90
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By Millman’s theorem,
Vzo Yr+Vyo Yy + Ypo Yy
Yr+Yy+Yp
(254.03.20°)(0.120°) +(254.03/-120°)(0.2£-90°) + (254.03 Z— 240°)(0.2290°)
0.120°+0.22-90°+0.2£90°

\',.\'O =

=025.96/180° V
Voltage across phase impedance
Vrn =Veo — Vo =254.03£0°-625.96£180° =880£0° V
Vyn = Vyo — Vyo = 254.03 £-120°-625.96 £180° = 545.29/-23.79° V
Vay = Vo — Vo =254.03£-240° - 625.96 £180° = 545.29£23.79° V
Phase currents/ line currents
Viey  880£0°

l;\r = ~ 2884(]0/\
Zp 10£0°
Vi 545.29.-23.79°

Iy = — =109.06/-113.79° A
Z, 5290°
Vv 5452922379 |

[, =—="—" —— =109.06/113.79° A
Z’B 34_9(]

12) In the circuit of Fig., a symmetrical 3-phase 100V, three-wire supply feeds an unbalanced
star-connected load, with impedances of the load as Zr=5200(), Zy=2,90° Q) and Zg=42-90° Q.
Find the line currents and voltage across the impedance using star-delta transformation

method.
Ig
R o >

j2 O

LS

SOL:
V=100V, Zp=520°Q, Zy=2/90°Q, Zg=4/-90°Q

Page—39



The unbalanced star-connected load can be converted into equivalent delta-connected load by star-delta
transformation technique.

737y 5.20°)(2.290°
Zpy =Zp+Zy + 221 — 5000 +2.2900+ CEDCAT) _ 55 5566002
Z, 4/-90°
y A0 5 2290°)(4.4-90°
Zyg =Zy+Zz+—F = 2./90° +4./-90°+ _)( = ) 5 56./-51.34°Q)
Ly 5207
TidTn (4 2= 90°)(520°)

=4/-90°+520°+
Z, 2290°

The equivalent delta-connected load 1s shown in Fig.
For a delta-connected load.,

Vo =V, =100 V

Let  Vgy =10020°V
Vi =100£-120° V In
\"BR - 1004_ 24(]”‘ \"

Phase currents

=04/-141.34°Q

ZBR:ZB+ZR+

. o Iy
Lpy = Vey o 100207 _ 4155, 38660 A Y o——
Zay 3.2£38.66°
Vv, 100.£—120°
Ipp BB = =39.06/—68.66° A b |
Lyp 2.50/-51.34° B o > >
1y =or o 100272307\ 5s 98660 A

Zow 6.4/—141.34°
Line currents

I =lgy —Ipr =31.254-38.66° —15.63£-98.66° = 27.06 £/—8.65° A

Iy =Lz —Igy =39.06£-68.66° —31.252-38.66° =19.7£-121.14° A

Ip =gz —Iyp =15.63/-98.66° —39.06./—68.66° = 26.69.128.36°A
These line currents are equal to the line currents of the original star-connected load.
For a star-connected load.

]ph =1

Ipy =27.06£-8.65° A

Iyy =19.72—-121.14° A

Izy =26.69£128.36° A

Vv =2 Iz =(5£20°)(27.06£-8.657) =135.3£-8.65°V

Viv =Zy Ly =(2290°)(19.7£-121.14°) =394 £=-31.14° V

Voy =Zp Ipy =(424-90°)(26.692128.36°) =106.76 £38.36° V
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13) A three-phase supply with a line voltage of 250 V has an unbalanced delta-connected load
as shown in Fig. Determine (a) phase currents, (b) line currents, (c) total active power and (d)
total reactive power, if phase sequence is ABC.

‘fA

A O T > A

V, =250V Ica

Zop=

5 I 25 £90° Q Z,5=20£0°Q

O0——>»

IAB

c le | lec

o L -

[ C L B

Zpo=15 £20° Q)

SOL:
Let Vi =25020°V, Vyo =250/-120°V, Vi, =250/-240°V,

L,5=20£0°Q, Zpc=15220°Q, Zcy=25290°Q

(a) Phase currents

V. 25020°
Ly=—"= = 12.5Z0°A
Z, 2020°

Ve 250 £-120°

Iy = =16.67/-140°A
Zye 15.£20°
V, 250 £—240°

I, ===~ —10£30°A
Zes 25 290°

(b) Line currents
I, =L —Tcy=12.5£0°-10£30°=6.3£~52.48°A

I =10 — L4 =16.67£-140°-12.5£0° =27.454-157.02°A

I =14 =Tz =10£30°-16.67£-140° = 26.57£36.25°A
(c) Total active power

Py =Vyg 145 cos ¢ =250%12.5xcos(0°)=3.13 kW

Pye =Vge Ipc cos ppe = 250 x16.67 X cos(20°) = 3.92 kW
Pey =Veyq Icy cos @y =250 X25%cos(90°) =0
P=Pyp+Ppc+Pcy=313+392+0=7.05kW
(d) Total reactive power

Oup =Vyp Iip smoyp =250x12.5xsin(0°) =0

Opc =Vpe Ipe sin dpc =250 x16.67 x sin (20°) = 1.43 kVAR

Oca =Veyq Icq sin @cyg = 250 x25%sin(90°) = 6.25 kVAR

Q=04+0pc +0cy =0+1.43+625=7.68 kVAR
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14) A balanced abc-sequence Y-connected source with Van=1002£109V is connected to a A-
connected balanced load (8+j4)(1 per phase. Calculate the phase and line currents.

SOL:
The load impedance is

Zy =8 + j4 = 8.944/26.57° O
If the phase voltage V,, = 100/10°, then the line voltage is

Vo = Vo V3/30° = 100V3/10° + 30° = V45
Vs = 173.2/40° V

The phase currents are

L, — Vs _ 173.2@
L, 8.944 /26.57°
Ipc = Lip/—120° = 19.36/—106.57° A
Icy = Lip/+120° = 19.36/133.43° A
The line currents are

I, = LzV3/-30° = V3(19.36) /13.43° — 30°

= 19.36/13.43° A

I.=1,/+120° = 33.53/103.43° A

15) A 400 V, three-phase supply feeds an unbalanced three-wire, star connected load. The
branch impedances of the load are Zr = 4+j8 Q, Zy = 3+j4 Q and Zg = 15+j20 Q. Find the line
currents and voltage across each phase impedance. Assume RYB sequence.

SOL:
The unbalanced star load and its equivalent delta (A) is shown in

Fig. (a) and (b) respectively.
= (4 +,8) ) = 8.944 £63.4° ()

Z,=(3+j40Q=5,51°0
Zy = (15 +j20) Q = 25 £53.1° Q
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)

4Q

j8Q

3Q

j4Q

(a)

ZoZy + 22y + 2y,

= (8.94 £63.4°) (5 £53.1°) + (5 £53.1°) (25 £53.1°)

+ (25 £53.1°) (8.94 £63.4°)
= 391.80 £113.23°

| ZyZy 42y Zy+Z574  391.80£113.23°

=15.67 £60.13°

= 43.83 £49.83°

Zoy =
K Zy 25/53.1°
7 _Zrly tZyZy+ZyZy _39180£11323°
" Zy 8.94 /63.4°
ZpZy+ZyZy+ZyZ, 391.804£113.23°
ZBR = — =

Z,

Taking V,y as reference, Vy, = 400 Z0

= 78.36 £60.13°

5/453.1°

Vyg = 400 £=120°; Vg, = 400 £-240°

 Vpy  400£0°
R Zpy  15.67£60.13°
l = V)'B = 400 é e 1200
' Z,,  43.83/49.83°
=

Zen 718.36260.13°

= 25.52 £-60.13°

=9.12 £-169.83°

=5.10 £-300.13°
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The various line currents in the delta load are
I, = Iy Iy = 25.52 £-60.13° - 5.1 £-300.13°
= 28.41 Z-69.07° A
I, =1,~1y =9.12 £-169.83° - 5.52 £-60.13°
= 29.85 Z136.58° A
IL=1g-1,= 5.1 £-300.13° - 9.12 £-169.83°
= 13 £27.60° A

These line currents are also equal to the line (phase) currents of the original
star-connected load. The voltage drop across each star-connected load will be as follows.
Voltage drop across Z, = 1,Z,

= (28.41 £-69.070°) (8.94 £63.4°) = 253.89 Z-5.67°V
Voltage drop across Z, = I,Z,
= (29.85 £136.58°) (5 £53.1°) = 149.2 £189.68° V

Voltage drop across Z, = I,Z,
= (13 £27.60°) (25 £53.1°) = 325 Z80.70° V

16) A symmetrical three-phase 100V; three-wire supply feeds an unbalanced star-connected
load, with impedances of the load as Zr = 5200 Q, Zy = 2£90° Q and Zg = 4£-90° (. Find the (i)
line currents (ii) Voltage across the impedances and (iii) the displacement neutral voltage.
SOL:
Using Millman’s theorem:

Consider Fig. taking V', as reference line voltage = 100 £0°.

R R

@ Tvno 5Q

© -jaq \/\ 99}%2 2

S B \

Vo /
NN ,

/ Vyo \\ B['/ \l Y
B/ i\" :. |
| [
1 _
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Phase voltages log 30° behind their respective line voltages. Therefore, the three

phase voltages are

00
=0
100
l’}. g = ==L~ 150°
( M{i
100
l#” —— --\-/-—g—- L - 2?00
¥ e i e 8 LB 20P
Zp S5/0°
¥y = o = = 0.5./-90°
/_) 2./90°
- Y— 0.25 /90°

L Z, 4/-90°
VaoYr + VyoYy + Yao¥y = (57.73 £-30°) (0.2 £0°)
+ (57.73 £-150°) (0.5 £-90°)
+ (57.73 Z-270°) (0.25 £90°)

= 11.54 £-30° + 28.86 £-240° + 14.43 Z-180°

= (10 - j5.77) + (-14.43 + j25) + (-14.43 + 0)

= —18.86 + j19.23 = 26.93 £134.44°

Y+ Yy + Yy =02 + 0.5 £-90° + 0.25 £90°
= (.32 Z-51.34°
V.. = VRO YR +V)‘O Y) +VB() Yg = 2693[134440
= Yp+Yy +Y, 0.32/-51.34°

= 84.15 £185.78°
The three load phase voltages are

Veo = Veo— Voo
= 57.73 /-30° - 84.15 /185.78°

= (50 —;28.86) — (— 83.72 - j8.47)
= (133.72 - j20.4) = 135.26 £-8.67°
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Vioo = Vyo— Voo

= 57.73 £Z-150° - 84.15 £185.78°

= (50 - ;28.86) - (— 83.72 - j8.47)

= 33.72 - 204 = 39.4 £-31.17° or 39.4 £328.8°
Voo = Vo~ Voo

= 5§7.73 Z-270° -84.15 £185.78°

=0 + j57.73 + 83.72 + j8.47

= 83.72 + j66.2 = 106.73 £38.33°
13526 £—8.67°

[ — 20.06Z—8.67°
520°
39.4 /328.80°
PO o G SRR
2790°
s SRIOEINNT o aeeR 21NN
47-90°

17) The unbalanced Y-load of Fig. has balanced voltages of 100 V and the acb sequence.
Calculate the line currents and the neutral current. Take Za = 15, Zg = 10+ j5 Q, Z¢c =6 - j8 Q.

—_— A

SOL:

100/0°

the line currents are 1 = = 6.67/0° A

15
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100/120°  100/120°
BT 045 1L18/2656°

100/-120°  100/—120°
T8 10/-53.1%

= 8.94/93.44° A

= 10/—66.87° A

the current in the neutral line is
L=, +1I+L)=—(6.67 — 054 + j8.92 + 3.93 — j9.2)
= —10.06 + j0.28 = 10.06/178.4° A

18) For the unbalanced circuit in Fig,, find the line currents using mesh analysis
L

Q_x_;'_ s

120,/0° rms =75Q

(1) |
N

.8

120/120° rms {4~ 120 /—120° rms . —j10Q
< a ’ :5‘:\ 10 Q
I,
C Cf

SOL:
(a) We use mesh analysis to find the required currents. For mesh 1,

120/—120° — 120/0° + (10 + j5)I; — 10L, = 0
or
(10 + /51, — 10L, = 120V3/30°
For mesh 2.
120/120° — 120/—120° + (10 — j10)I, — 10I; = 0
or
—10I, + (10 — j10)I, = 120’\;@@
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Equations form a matrix equation:

[10 +j5 —10 ] [Il] B [ 120V/3 /30° ]
—10 10 —j10] LL, 120V3/-90°

The determinants are

10+/5 =10
A= = 50 — j50 = 70.71 /—45°
~10 10 —;'10‘ J [—45°
120V3 /30° —10
= _ [ = 207.85(13.66 — j13.66)
120V3/-90° 10 — /10

= 4015/—45°

10 + 75  120V3/30°
A, = ' _ /30 = 207.85(13.66 — j5)
—10  120Vv3/—90°
= 3023.4/-20.1°
The mesh currents are
A 4015.23 /—45°
I, =—= — 5678 A

A 70.71/—45°
A, 3023.4/-20.1°
L=—= — = 42.75/24.9° A

A 70.71/—45°

The line currents are

=1, =5678A, I =-1L =4275/—1551°A
I, =L — I, = 38.78 + j18 — 56.78 = 25.46/135° A
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